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ABSTRACT 
 

The study was conducted in Joida taluk of Uttara Kannada district to assess the forest aboveground 
biomass using L band data. In this study, an attempt was made to estimate the aboveground 
biomass using SAR backscatter. The study area covered dense, moderately dense, and sparse 
forests. Nearly 0.01 percent of the forest area was sampled through 30 sampling plots. The point 
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center quadrate (PCQ) method was used to select the tree and collected the tree growth 
parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The 
sampling plots were randomly selected in all types of forest and the location details such as the 
latitude, longitude, and altitude were collected from GPS. The tree crown density was measured 
with a densitometer. Each sample plot of forest aboveground biomass (AGB) was estimated using 
specific gravity and field-measured forest parameters. The fully polarimetric quad-pol (HH, HV, VV 
&VH) space borne SAR data of the Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) 
of Advanced Land Observing Satellite-2 (ALOS-2) is used in this study for the natural forest of Joida 
Taluk of Uttara Kannada, Karnataka, India. The Orthorectification was performed on the 
radiometrically calibrated SAR data to measure the normalized radar cross-section of all the field-
measured forest plot locations. SAR backscatter-based Multiple Linear Regression (MLR) model 
was implemented to retrieve forest aboveground biomass of the study area. The cross-polarization 
(HV) had shown a good correlation with forest above ground biomass. Forest Stem Volume varies 
from 16.11 m3/ha to1235.79m3/ha (12.88 t/ha to 1000.98 t/ha). The higher values are from the plots 
of dense forests having higher DBH and height. The sampled area included dense forest, 
moderately dense forest, and sparse forest and hence the variation in biomass has occurred. The 
Multiple Linear Regression (MLR) analysis was performed to estimate the aboveground biomass of 
the natural forest areas of the Joida taluk. This study used four combinations (HH &HV, VV &HH, 
HV & VH, VV&VH) of polarimetric channels in the forest aboveground biomass retrieval. Among 
them, the combination of HH and HV polarization shows a good correlation with field and predicted 
biomass. The predicted biomass from HH & HV polarisation varies from 79t/ha to 267t/ha, VV & VH 
shows the biomass from 62t/ha to 236t/ha, VV& HH showed from 62t/ha to 205 t/ha and HV&VH 
indicated from 79t/ha to 268t/ha. Among them the HH and HV polarization backscatter can be used 
to retrieve the aboveground biomass of forests though linear modeling. The RMSE and R2values 
that were obtained from the MLR for the polarimetric combinations HH & HV and HH & VV were 78 
t/ha and 0.86, and 81 t/ha and 0.85 respectively. Forest AGB retrieval from HH & HV polarization-
based MLR model has shown the best results. The results indicated that the backscatter from 
different polarisation could be used for developing the MLR model for estimating above ground 
biomass.  
 

 
Keywords: Forest; above ground biomass; SAR; polarization; backscatter; multiple linear regression 

(MLR). 
 

1. INTRODUCTION 
 

Forest plays a vital role in regulating climate 
through carbon sequestration in its biomass. 
Forest Aboveground Biomass (AGB) reflects the 
health and environmental conditions of a forest 
ecosystem (Sinha et al ., 2015).Forest is one of 
the important components of the ecosystem. 
Tropical forests are pivotal in this regard as they 
sequester and store relatively large amounts of 
carbon compared to other forests (Nesha et al., 
2020). Forest biomass is an essential component 
to index the condition of the forest. The forest is 
the major sink of carbon storage and it becomes 
the source due to anthropogenic activities 
leading to the degradation of forest which further 
leads to global warming (Zhu et al., 2020). The 
accurate estimation of forest biomass is most 
importantin estimating carbon storage. The 
importance of accurately reporting the carbon 
content (biomass) of forested lands over time 
has been acknowledged by several studies. It 
plays an irreplaceable role in mitigating global 

warming caused by the increase in atmospheric 
carbon dioxide. Forest AGB can be determined 
most robustly from the cross-polarimetric channel 
of L-band spaceborne SAR data. Recently, there 
has been growing interest in the use of 
spaceborne SAR data in estimating AGB of 
forest vegetation (Otukei & Emanuel, 2015). SAR 
sensor transmits a microwave pulse towards the 
Earth’s surface and receives the backscattered 
signal that is determined by the surface and 
includes information regarding the land surface 
structure such as forest characteristics. 
Microwaves used in SAR remote sensing are not 
affected by cloud cover, hence SAR data is being 
widely used in areas where cloud cover exists for 
most of the period.SAR plays an important role in 
monitoring the biophysical parameters of forests 
since its microwave energy can penetrate clouds, 
which occur constantly in the tropics, and acquire 
data throughout the year (Lu 2006: Zhu et al 
2015 and Pham & Yoshino, 2017). The fully 
polarimetric quad-pol SAR data helps in 
identifying the ground features accurately from 
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different combinations of polarization (HH, HV, 
VV, and VH) for land use and land cover 
classification (Garg et al. 2021, 2022; Verma et 
al. 2022). The HV polarization showed a good 
correlation with the biomass and the multi-linear 
regression model shows agood correlation 
between field calculated and predicted biomass 
(Behera et al. 2016; Sinha et al.,2016; 
Mukhopadhyay et al. 2021). Several studies 
indicated that HV polarization is most suitable for 
predicting the biomass using backscatter. For 
estimating the biomass of forest, the backscatter 
from different polarization is very important as in 
quad-pol data, HV polarization gave better 
backscatter from the forest and backscatter 
intensity increases with the density of trees and 
AGB is increasing with the dense forest as 
indicated by higher backscatter from the dense 
forest.A stable relationship between SAR 
backscatter and above-ground biomass (AGB) 
has been observed and described in several 
studies (Behera et al. 2016; Joshi and Kumar 
2017a; Mukhopadhyay et al. 2021; Stovall and 
Shugart, 2018). Many studies have reported 
signal saturation between 100 and 250 tons per 
hectare (t/ha) above which the measured SAR 
backscatter no longer increases proportionately. 
Polarimetric SAR remote sensing has shown 
wide applicability in forest parameters retrieval 
(Joshi and Kumar, 2017b; Khati et al. 2018; 
Kumar et al. 2017, 2018; Kumar et al., 2020; 
Tomar et al. 2019). It has been found that the 
polarimetric SAR remote sensing (PolSAR) data 
is capable of providing information on 
contribution to backscattering from different 
contributors within the resolution cells and the 
polarimetric interferometric SAR (PolInSAR) 
technique has the potential to retrieve 
interferometric coherence contributed by different 
components of the manmade and natural targets 
(Asopa and Kumar, 2020; Babu et al., 2022; 
Bhanu Prakash and Kumar, 2021a, 2021b; 
Shafai and Kumar, 2020). PolSAR-based forest 
aboveground estimation and PolInSAR-based 
forest height retrieval showed less dependency 
on field measurement for implementing modeling 
approaches with reasonable accuracy (Kumar et 
al., 2020, 2019, 2017b, 2017a; Sai Bharadwaj et 
al., 2015). However, collecting field data for the 
forest AGB estimation and taking measurements 
using stratified random sampling is not a very 
difficult task in forest areas where there is not 
much diversity in forest types. For estimating the 
ground truth for aboveground biomass estimation 
of naturalforest, point centeredsamplingmethodis 
most suitable as the tree spacing is not at regular 
intervalsin a natural forest as compared to the 

line transect and square plot method. By keeping 
the above-mentioned points in mind, an 
experiment was planned to estimate the forest 
aboveground biomass using an L-band 
backscatter-based regression approach for the 
forest area of Joida taluk of Uttara Kannada 
district, Karnataka, India. The forest types of the 
Joida Taluk includes moist deciduous, Semi-
evergreen, and evergreen forest with dense and 
moderately dense forest types based on crown 
density cover in each of the forest types. The 
biomass estimation from SAR data using MLR 
model-based approach for such a complex forest 
is very much challenging and rigorous. Hence an 
attempt was made to investigate the biophysical 
parameters of dense, moderately dense, and 
sparse forest areas using the point-centered 
quarter (PCQ) method. The point-centered 
quarter (PCQ) method is one of the most suitable 
sampling plans used in field-data collection for 
aboveground biomass measurement in natural 
forests with randomly spaced trees.The 
objectives of this research also include 
establishing a regression model for predicting the 
AGB of complex forests using backscatters of 
different polarisation of L-band spaceborne SAR 
data of the Phased Array L-band Synthetic 
Aperture Radar-2 (PALSAR-2) of Advanced Land 
Observing Satellite-2 (ALOS-2). 
 

2. MATERIALS AND METHODS  
 

2.1 Study Area 
 

The study area mainly covers the Joida (Supa) 
Taluk of Uttara Kannada, Western Ghats of 
Karnataka, India. It is located between the 
coordinates 140 54' 13" N to 150 31'59" N latitude 
and 740 08' 11" E to 740 31' 10" E longitude with 
an elevation of 532m (Fig. 1). The mean monthly 
temperature ranges from 25oC to 33ºC. The 
study area covered 2,87,000 hectares. It is 
mainly covered with dense forest; native 
vegetation is evergreen/semi-evergreen type and 
has a continuum to secondary/moist deciduous 
types in lower rainfall tracts to the east. Forest 
types in the study area were classified as tropical 
wet semi-evergreen and tropical moist deciduous 
forest types. The study area receives the tropical 
monsoon climate and the major tree species 
found are Tectonagrandis, Xyliaxylocarpa, 
Lagerstroemia lanceolata, Terminalia bellirica, 
Terminalia paniculata,Dilleniapentagyna,which 
are also found in the semi-evergreen and 
evergreen forest of other places(Sabzar Ahmad 
and Ramachandra, 2016). Fig. 1 shows the 
location of the study area on the Map of India. 
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The political map of India that has been used in 
Fig. 1 is downloaded from the online map portal 
of the Survey of India (SoI) which is the National 
Survey and Mapping Organization of the country 
under the Department of Science & Technology. 
The green polygon in Fig. 1 is the state boundary 
map of Karnataka State, India. The Joida (Supa) 
Taluk of Uttara Kannada is shown in a yellow 
polygon in Fig. 1 and the rectangular shape (with 
dark yellow strips) over the Joida (Supa) Taluk 
shows the extent of the L-band ALOS-2 
PALSAR-2 data. 
 

2.2 Satellite Data Used 
 

The ALOS-2 PALSAR-2single look complex 
(SLC) data wasacquired on 26-05-2016instrip 

map mode. The incidence angle of the quad-pol 
data was 38.97°. The data used was of 1.1level 
which had the phase information. The L-band 
data is fully polarized having HH, HV, VH, and 
VVpolarizations. A detailed description of the 
data is shown in Table 1.  
 

2.3 Field Data Collection 
 

The field data from the study area were collected 
from the entire area using randomly selected 
sample plots. A total of 30 sample plots were laid 
out in the study area and the sampling plots of 30 
numbers were approximately 0.01 percent of the 
forest area. Random field sampling plots were 
done throughout the study area according to 
accessibility. The Point Centered Quarter (PCQ)

 

 
 

Fig. 1. Study area map 
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Table 1. Description of SAR data 
 

Satellite/Sensor Name  ALOS-2 PALSAR-2 

Daate of Acquistion 26-05-2016 
Range and Azimuth Resolutions 2.86 m and 3.11 m  
Frequency and Wavelength 1236.499 MHz and 24.245 cm 
Far and Near range Incidence Angles 37.619° and 40.284° 
Polarizations HH+HV+VH+VV 

 
method was used to collect the data from the 
study area. The sample plots were taken in such 
a way that it represents the different forest 
density. In the PCQ method,100 m length was 
randomly selected with the rope, and tree 
parameters were measured at starting point and 
at 25, 50, 75, and 100m length. At each point, 
there are four quadrates in each quadrate one 
tree which is near the center was selected and a 
total of 4 trees one in each quadrate which is 
near the center point was selected, and its length 
from the center point was measured with a tape. 
The layout of the PCQ method is shown in Fig. 2. 
The PCQ method was used since this method is 
most suitable in the forest where the trees are 
randomly grown without proper spacing in a 
natural forest and the PCQ method is a more 
precise method for estimating the above-ground 
biomass (Kumarathunge et al, 2011, Renske 
Hijbeek et al, 2013, David et al 2004).The 
distances of each tree from the center were 
recorded and tree growth parameters were 
recorded. The GBH (Girth at Brest Height), and 
girth at the base of the tree were measured with 
diameter tape. The height of the trees in the 
forest was measured with a Ravi multimeter 
made by Aqua Antiques Nauticals. The location 
of each sample plot information such as 
latitude/longitude and altitudewere recorded 
using Garmin e Trex 20x GPS (Huang et al., 
2015). In each sample plot, a total of 20 trees 
were recorded and the sample area was 
estimated by multiplying the square of the 
average length of the trees from the center point 
(Total measured length /20) and the total number 
of trees (20). The tree volume was estimated 
using the standard formula given below (FRI 
1996; Kasischke, & Christensen.,1990, Mangla 
et al., 2016). The aboveground biomass was 
calculated after multiplying each tree's volume by 
its specific gravity (Kumar et al. 2012). The wood 
density or specific gravity that is represented by 
dry weight/green volume is the solid wood 
substance in a given volume of wood (Zobel, 
2004). 
 

Stem Volume SV=Basal Area BA×Tree 
Height ×Form Factor (FF) 

Basal Area= π(DBH)24 
 
Forest Aboveground Biomass (AGB)=Stem 
Volume SV×Specific Gravity (SG) 

 
The artificial form factor (FF) is the ratio of the 
volume calculated using DBH and the tree 
volume calculated using the base diameter of the 
tree and is a unitless quantity. 
 
The specific gravity of major species (FSI,1996) 
was considered and the average specific gravity 
for each sample plot was taken to obtain the 
aboveground biomass in tones (Chowdhury and 
Ghosh, 1958). 
 

2.4 Satellite Data Analysis  
 

The data used for the study was ALOS-2 
PALSAR-2, L-band SAR data which is quad pol 
having all polarizations (HH, HV, VH, and VV). 
The data of each polarization contains real and 
imaginary bands (i and q) and intensity bands. 
These bands were used to create an RGB 
image. The data is being pre-processed and the 
methodology used is shown in the flowchart (Fig. 
3). The L band data was processed in the 
Sentinel-1 Toolbox (S1TBX) of Sentinel 
Application Platform (SNAP)V 8.0 (European 
Space Agency (ESA) 2020) and the radiometric 
calibration was perfomed to the single look 
complex (SLC) data of ALOS-2 PALSAR-2. 
Range-Doppler Terrain Correction algorithm was 
implemented on the quad-pol fully polarimetric 
SAR data for the Orthorectification using 
Copernicus 30m Global DEM in SNAP V 8.0 
toolbox. A refined Lee filter was used to minimize 
the speckle effect from the SAR data.  
 
The image was re-projected to the coordinate 
system of the study area 
(WGS_1984_UTM_Zone_43) (Das & Patnaik 
2017; Das et al., 2016; Sharifi et al., 2016). The 
PALSAR-2 image was used to retrieve HH, HV, 
VV, and VH polarized backscatter coefficients 
which are expressed in decibels (dB). The data 
was calibrated to calculate the backscatter 
coefficient of the points where field data was 
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collected. The backscatter calibration of SLC 
data of ALSO-2 PALSAR-2 was performed using 
Eq. (1) (Peregon& Yamagata., 2013). The 
backscatter cross-section of ALOS-2 PALSAR-2 
can be obtained by the ensemble averaging or 

the spatial averaging of pixel values around the 
target as shown in Eq.(1) (Japan Aerospace 
Exploration Agency 2016).  
 

σ0=10×log10DN2+CF                                (1) 
 

 
 

Fig. 2. Sample plot design 
 

PCQ Method : Point Centred Quarter Method 
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Fig. 3. Flowchart of methodology 
 

2.5 Model Implementation 
 

The study attempts to estimate forest AGB using 
field inventory data and geospatial techniques. A 
model was implemented for establishing the 
relationship between field inventory data and 
backscatter from different polarization. The 
individual relationship of each polarisation with 
field-measured AGB was used. The graphs were 
prepared between the field-generated AGB with 
the corresponding SAR backscattering 
coefficients.  
 

The multilinear-linear regression analysis was 
done to relate the backscatter (σ0) coefficient of 
SAR to the corresponding field calculated AGB. 
This model is used to analyze the relationship 
between the dependent variable (field measured 
forest AGB) and the independent variable (SAR 
backscatter) (Thumatyet al., 2016).This model 
regresses a correlated variable (AGB) based on 
one or more independent variables (Jha et al., 
2006; Zhu et al., 2020).The growth parameters 
were collected from30PCQ sample plots out of 
which20plots of data were used for model 
generation and the remaining 10 sample plots 
were used for model validation. The proportion of 
variance (R2) and root mean square error 
(RMSE) is used to evaluate the model 

performance (Nizalapur et al., 2010). Eq. (2) is 
generated by using a common regression 
equation in which the model parameters were 
calculated by running the regression analysis 
between field calculated forest AGB and 
backscatter coefficients of the SAR data in 
different polarimetric combinations for the 
corresponding field plots.  
 

YBIOMASS(t/ha) = A + (B * σ0HH) + (C * σ0HV)(2) 
 

where A, B, and C are model parameters. The 
study carried out by Cassol et al., 2019 had 
derived multiple linear regression models (MLR) 
equation between a dependent variable (Y) and 
multiple independent variables (backscatter 
coefficient). Many previous studies showed the 
use of the MLR model for estimating forest 
biomass by using the backscatter coefficient 
(Zhu et al., 2020; Das & Patnaik 2017). 
 

2.6 Statistical Analysis 
 

The regression model is validated by assessing 
the coefficient of determination (R2) between the 
predicted and field-measured forest AGB values. 
The root mean square error was also calculated 
to know the relationship between observed and 
predicted values. The formula to calculate the 
RMSE is shown in Eq. (3). 
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RMSE= √ [Σ (Pi-Oi) 
2 /n]                              (3) 

 
Where  
 

Σ is the sum 
Pi is the predicted value for ith observation in 
the dataset. 
Oi is the observed value for the ith 
observation in the dataset. 
n is the number of samples. 

 

3. RESULTS AND DISCUSSION 
 
The aboveground biomass (AGB) of sampled 
plots was estimated in tones per hectare based 
on the sample plot biomass, the location of 
sample plots and corresponding biomass is given 
in Table 2.  
 
Forest Stem Volume (SV) of sample plots varies 
from 16.11 m3/ha to1235.79m3/ha. The higher 

values are from the plots of dense forests having 
higher DBH and height. The sampled area 
included dense forest, moderately dense forest, 
and sparse forest and hence the variation in 
biomass has occurred. Forest AGB of each 
sample plot in tones per hectare was varying 
from 12.88 t/ha to 1000.98 t/ha due to variations 
in the specific gravity of different species. An 
unexpectedly high forest AGB in sample plot 5 
was due to large values of DBH and tree heights 
that were found in the evergreen forest whereas 
the lowest AGB found in the 27th plot was due to 
the small diameter tree and short height trees, 
since the PCQ method was followed randomly 
there was a chance of getting a uncertainty in 
field-measured forest parameters, hence there 
may be difference in AGB of forest patches. The 
backscatter of the L-band in different polarization 
from different sample plots was used to predict 
the biomass. The backscatter image of HH, HV, 
VH, and VV is shown in Fig. 4. 

 

Table 2. Location of the field plots and field-measured forest parameters (Stem Volume and 
AGB) 

 

Sl.no Latitude Longitude Volume (m3/ha) Aboveground Biomass (AGB) (t/ha) 

1.  15˚11'27" 74˚ 29'71" 404.77 204.00 
2.  15˚11'17.89" 74˚29'42" 122.00 98.82 
3.  15˚10'22.2" 74˚29'08.9" 940.50 474.03 
4.  15˚10'30.38" 74˚29'13.2 722.43 585.16 
5.  15˚11'59.8" 74˚31'61" 1235.79 1000.98 
6.  15˚8'46" 74˚22'14" 502.03 330.33 
7.  15˚11'33.6" 74˚32'38.8" 760.09 554.86 
8.  15˚11'8.7" 74˚24'15.1" 333.92 219.71 
9.  15˚11'44" 74˚31'42" 438.74 242.18 
10.  15˚10'46" 74˚29'15" 628.00 413.22 
11.  15˚11'51" 74˚31'36.6" 685.36 450.96 
12.  15˚10'39.7" 74˚29'19.2" 290.17 190.93 
13.  15˚15'37.2" 74˚14'9.1" 339.50 223.41 
14.  15˚10'15" 74˚29'19" 802.51 585.83 
15.  15˚09'14" 74˚28'0.28" 254.08 128.06 
16.  15˚09'21" 74˚28'23" 270.42 136.29 
17.  15˚9'4.9" 74˚35'15" 381.00 250.00 
18.  15˚11'18" 74˚29'56" 287.00 173.00 
19.  15˚16'12" 74˚18'5" 342.08 249.72 
20.  15˚20'12" 74˚34'35" 144.56 86.74 
21.  15˚28'54" 74˚29'41" 105.01 65.11 
22.  15˚20'71" 74˚36'30" 226.59 149.09 
23.  15˚10'54" 74˚29'51" 290.08 220.46 
24.  15˚11'94" 74˚24'53" 77.40 62.70 
25.  15˚24'53" 74˚29'51" 205.19 128.86 
26.  15˚12'54" 74˚36'11" 152.72 122.18 
27.  15˚8'46" 74˚29'51" 16.11 12.88 
28.  15˚08'22" 74˚30'36" 35.59 17.93 
29.  15˚20'78" 74˚28'11" 40.43 32.75 
30.  15˚11'72" 74˚31'84" 378.22 109.70 
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Fig. 4. Backscatter image of HH, HV, VH, and VV 
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Table 3. The backscatter values (dB) for biomass plots from different polarization of the L band 
 

SL NO LAT LONG BIOMASS (t/ha) HH HV VV VH Forest types 

1 15˚8'46" 74˚29'51" 12.88 -8 -14 -9 -12 DF 
2 15˚08'22" 74˚30'36" 17.93 -8 -15 -9 -12 O/SF 
3 15˚20'78" 74˚28'11" 32.75 -7 -14 -8 -13 O/SF 
4 15˚11'94" 74˚24'53" 62.70 -8 -14 -8 -13 O/SF 
5 15˚28'54" 74˚29'41" 65.11 -6 -14 -9 -13 MDF 
6 15˚20'12" 74˚34'35" 86.74 -6 -13 -9 -14 MDF 
7 15˚11'72" 74˚31'84" 109.70 -8 -13 -10 -14 MDF 
8 15˚12'54" 74˚36'11" 122.18 -6 -13 -8 -13 O/SF 
9 15˚09'14" 74˚28'0.28" 128.06 -7 -13 -7 -13 DF 
10 15˚24'53" 74˚29'51" 128.86 -6 -13 -7 -13 O/SF 
11 15˚09'21" 74˚28'23" 136.29 -8 -14 -8 -14 DF 
12 15˚20'71" 74˚33'30" 149.09 -7 -14 -11 -14 MDF 
13 15˚11'18" 74˚29'56" 173.00 -6 -12 -6 -18 DF 
14 15˚10'39.7" 74˚29'19.2" 190.93 -7 -11 -7 -13 MDF 
15 15˚11'27" 74˚ 29'71" 204.00 -8 -11 -7 -12 DF 
16 15˚11'8.7" 74˚24'15.1" 219.71 -8 -12 -8 -12 O/SF 
17 15˚10'54" 74˚29'51" 220.46 -7 -12 -6 -12 MDF 
18 15˚15'37.2" 74˚14'9.1" 223.41 -5 -11 -5 -10 MDF 
19 15˚11'44" 74˚31'42" 242.18 -6 -11 -6 -11 MDF 
20 15˚16'12" 74˚18'5" 249.72 -6 -10 -3 -10 DF 
21 15˚20'12" 74˚34'35" 249.72 -7 -12 -8 -11 MDF 
22 15˚9'4.9" 74˚35'15" 250.00 -7 -11 -7 -11 DF 
23 15˚8'46" 74˚22'14" 330.33 -7 -10 -6 -10 DF 
24 15˚10'46" 74˚29'15" 413.22 -6 -11 -7 -11 MDF 
25 15˚11'51" 74˚31'36.6" 450.96 -6 -10 -7 -10 MDF 
26 15˚10'22.2" 74˚29'08.9" 474.03 -5 -11 -6 -11 MDF 
27 15˚11'33.6" 74˚32'38.8" 554.86 -6 -11 -6 -11 MDF 
28 15˚10'15" 74˚29'19" 585.83 -4 -9 -6 -11 MDF 
29 15˚11'17.89" 74˚29'42" 818.00 -4 -9 -5 -12 MDF 
30 15˚11'59.8" 74˚31'61" 1000.98 -3 -8 -4 -10 MDF 

DF=Dense forest MDF= Moderately dense forest O/SF= Open / sparse forest 

 
The backscatter value depends upon the tree 
density, forest types, and AGB, as AGB 
increases the sar backscatter values also 
increases. The backscatter from HH polarization 
is varied from -8 to -3 dB. HV polarization is 
varies from -15 to -8 dB. VV polarization is varies 
from -11 to -3 dB.VH polarization is varied from -
18 to -10 dB. 
 
A polarimetrically calibrated SAR data of a 
monostatic SAR system shows the highly 
correlated scatterplot between the cross-
polarimetric channels with similar/equal 
backscatter values for the corresponding 
locations in the image (Babu et al. 2021, 2022; 
Kumar et al. 2022; Maiti et al. 2021). The 
distortions from the PolSAR data are minimized 
with the polarimetric calibration exercise (Babu et 
al. 2019) and generally, the data provided to the 
users are free from errors and distortions (Kumar 
et al. 2022). Though deviation is observed in Fig. 
5 for the backscatter values of HV and VH for a 

few plots, most of the plot locations' backscatter 
values of both the cross-polarimetric channels 
are the same. The correlation between 
backscatter values for different polarization 
against field calculated biomass is shown in Fig. 
5. From Fig. 5 it is evident that the cross-
polarimetric channel shows higher sensitivity 
toward forest AGB retrieval.  
 
The backscatter values of HH and HV 
polarizationversus biomass indicated the 
correlation value R2 for HH is 0.60 whereas the 
correlation value for HV is 0.70. Similarly, the R2 
value for VV and VH are 0.66 and 0.57 
respectively. Among the different polarization, 
the correlation of biomass w.r.t volume scattering 
(HV) is higher i.e 0.70. The HV polarization is 
mostly used for forest studies. Several studies 
show the HV polarization exhibit most of the 
volume scattering which results in a better 
correlation with field data (Behera et al. 2016; 
Sinha et al.,2016; Mukhopadhyay et al. 2021; 
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Avtar et al.,2018). The vegetation scattering is 
dominant in HV polarization at a higher incidence 
angle because the backscatter depends on the 
volume of main scatterers (Le et al., 2002). 
Cross-polarization is mostly suitable for 
backscatter retrieval from the forest vegetation. 
Since the volume scattering is dominant in cross-
polarization it causes more backscattering in VH 
polarization.  
 

3.1 Model Implementation 
 
The ground truth data werecollected from 30 
sample plots across the study area. Based on 
the backscatter value for a different combination 
of polarization the predicted biomass was 
estimated. The predicted biomass obtained 
against the backscatter value w.r.t field 
calculated AGBis shown in Table 4. The 20 plots 
were used for model preparation and the 
remaining 10 plots were used for model 
validation. The 20 plots shown in Table 4 were 
used to retrieve the MLR model parameters. The 
model parameters are shown in Table 5 and 
these parameters are used in MLR for predicting 

the AFB of those plots which were used in the 
retrieval of model parameters A, B, and C.  
 
The predicted biomass using the backscattered 
coefficient was estimated. The equation for the 
biomass calculation is given in Eq. (2). The Multi-
linear regression analysis is carried out by using 
the backscatter values for HH & HV, HH & VV, 
HV & VH, and VH & VV as given in Eq.(2) (Shao, 
& Zhang., 2016). 
 
The model parameters A, B, and C, which were 
calculated during regression analysis are sown in 
Table 5. These model parameters were used to 
estimate forest AGB through the Multiple Linear 
Regression (MLR) model. 
 
The field calculated biomass varies from 13t/ha 
to 250t/ha. The predicted biomass from HH & HV 
polarisation varies from 79t/ha to 267t/ha, VV & 
VH shows the biomass varies from 62t/ha to 
236t/ha, VV& HH showed the variation from 
62t/ha to 205 t/ha and HV&VH indicated from 
79t/ha to 268t/ha. The HH and HV polarization 
backscatter can be used to retrieve 

 

 
 

Fig. 5. The correlation between calculated biomass and backscatter from different polarization 
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Table 4. The field-measured AGB and predicted AGB 

 
 Field calculated AGB(t/ha) Predicted biomass (t/ha) 

SL NO BIOMASS HH &HV VV & VH VV& HH HV&VH 

1 12.88 79 62 62 79 
2 17.93 32 49 62 32 
3 32.75 79 103 105 79 
4 62.70 79 103 121 79 
5 65.11 79 75 31 81 
6 109.70 125 103 121 124 
7 122.18 126 116 89 126 
8 128.06 126 157 163 126 
9 128.86 126 157 147 126 
10 136.29 79 103 121 79 
11 149.09 79 144 163 79 
12 173.00 173 134 205 162 
13 190.93 219 157 163 217 
14 204.00 219 128 121 219 
15 219.71 172 128 121 174 
16 220.46 173 210 221 174 
17 223.41 220 276 248 223 
18 242.18 220 223 205 221 
19 249.72 267 276 264 268 
20 249.72 267 236 205 268 

 
Table 5. Coefficients of MLR model’s parameters 

 
Polarisation A B C 

1. HH &HV 737 0.4 46 
2. HH &VV 459 58 -15 
3. HV &VH 740 45 2 
4. VH & VV 608 40 12 

 
the aboveground biomass of forests. The cross-
polarization backscatters are more sensitive for 
tree biomass estimation as compared to co-
polarimetric backscatter values (Behera et al. 
2016; Sinha et al.,2016; Mukhopadhyay et al. 
2021; Preetilal et al., 2021). 

 
Fig. 6 shows the correlation between the MLR-
based forest AGB and field-measured forest 
AGB for those 20 plots that were used to train 
the model to retrieve the input parameters of the 
model. It is evident from Fig. 6 that the highest 
coefficients of determinations were obtained from 
HH & HV and HV & VH polarimetric 
combinations. After analyzing the results shown 
in Fig. 6 it is clear that the MLR-based predicted 
forest AGB shows good agreement with field-
measured forest AGB. Since the MLR model-
based predicted AGB was compared with those 
forest plots that were used to train the model for 
input parameters retrieval so the remaining 10 
plots of forest AGB were used for validation of 
the modeled output. 

3.2 Model Validation 
 
The model was validated by using the forest 
AGB values of the remaining 10 plots of the field-
collected data. The Coefficients of MLR models 
that were retrieved for Eq.(2)areshown in Table 
4. The validation of MLR was done with the 
helpof field-collected forest AGB data for 10 
plots. The validation was done for the different 
polarimetric combinations of the ALOS-2 
PALSAR-2 data. The coefficient of determination 
(R2) and root mean square error (RMSE) was 
calculated for different polarimetric combinations 
and are given in Table 6. 

 
The four combinations of polarisation which are 
HH & HV, HH & VV, HV & VH, and VV & VH 
were used. The RMSE values range from 78 t/ha 
to 115 t/ha for different combinations. The HH & 
HV polarisation has the least RMSE value (78 
t/ha). The analysis shows that the HH & HV 
showed the best correlation with R2 at 0.86 
followed by HH & VV with R2of 0.85,VH& VV R2 
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of 0.81, and HV &VH R2 of0.70respectively. The 
correlation between the predicted biomass and 
field calculated biomass for different polarimetric 
combinations is shown in Fig. 7. The 10 sample 
plots which were used for model validation and 
correlation for different combinations as shown in 
Fig. 7 have indicated that the correlation value is 
highest with HH and HV (R2=0.86) followed by 
VV and VH (R2=0.81). The lowest RMSE (78 
t/ha) between field-collected forest AGB and 
model-derived output was obtained for the 
HH&HV polarimetric combination. 

3.3 Discussion 
 
A regression analysis was performed between 
the field-collected forest AGB values for the 30 
plots and the corresponding backscatter values 
of the polarimetric channels (Fig. 5). A 
comparative analysis of the values of coefficient 
of determination (R2) shows that the highest 
value is obtained for the cross polarimetric 
channel HV of the L-band ALOS-2 PALSAR-2 
data. Higher ranges of backscatter values were 
obtained from like polarimetric combinations 

 

 
 

Fig. 6. Correlation between MLR predicted Forest AGB and Field-measured Forest AGB (t/ha) 
for those plots that were used to train the model in different polarimetric combinations of 

ALOS-2 PALSAR-2 data 
 

Table 6. RMSE and R2 values of model validation 
 

SL.NO POLARISATION RMSE R2 

1 HH & HV 78 t/ha 0.86 
2 HH &VV 81 t/ha 0.85 
3 VH &VV 92 t/ha 0.81 
4 HV & VH 115 t/ha 0.70 
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Fig. 7. Correlation between MLR predicted and Field-measured Forest AGB(t/ha) for different 
polarimetric combinations of ALOS-2 PALSAR-2 data 

 
HH and VV, though comparatively low 
backscatter values were obtained in the L-band 
HV polarisation for the 30 plots of the field-
measured forest AGB then also the best 
correlation was obtained with HV polarisation. 
The forest AGB of sample plots varied due to 
variation in DBH and height of trees. Since the 
sampled area covers dense forest, moderately 
dense forest, and sparse forest, crown density 
influenced the variation in growth parameters. 
The highest forest AGB of 1000.98 t/ha in the 5th 
plot (Table 2) was due to higher DBH and larger 
tree heights found in the evergreen forest. Since 
the sample plots were laid randomly hence such 
variation was found in one plot in a real situation 
it could have happened. The very low AGB in 
the27th plot was due to the small diameter tree 
and less tree height (Table 2). This is one of the 
drawbacks of the PCQ method since the line 
transect was laid randomly it is the chance factor 
that there is the possibility of getting big trees 
and very small trees in any of the quadrates at 
every 25 meters. Among the different 

polarisations, the backscatter from HH and VV 
was higher (-3 dB) whereas the highest 
backscatter from cross polarisation both HV and 
VH were -8 and -10 respectively. However, 
saturation in backscatter was observed in several 
studies (Mermozet al. 2015) but in the present 
study, a clear saturation in SAR backscatter and 
forest AGB was not detected. This may be due to 
the small number of field plots in each forest type 
as a total of 30 plots were selected for different 
forest types which is a very small number for 
such a heterogeneous forest area. The 
uncertainty in positional accuracy of the field 
measured plots could also be not avoided as a 
reason for not getting a saturation in SAR 
backscatter and forest AGB. Several studies 
have shown that the HV polarization exhibit most 
of the volume scattering which results in better 
correlation with field data (Englhart et al., 2011. 
Behera et al. 2016; Sinha et al.,2016; 
Mukhopadhyay et al. 2021; Avtar et al.,2018). 
The vegetation scattering is dominant in HV 
polarization at a higher incidence angle because 
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the backscatter is contributed by the volume of 
the vegetation (Le et al., 2002). The cross-
polarization is volumetric scattering which is most 
suitable for the forest.  
 
The MLR was validated and it was found that the 
coefficient of determination(R2) was varying from 
0.70- to 0.86 for different polarimetric 
combinations. The polarimetric combination HH 
& HV has shown the best predicted MLR-based 
forest AGB in comparison to HV&VH, VV & VH, 
and HH & VV. The coefficient of determination 
that was obtained from HH & HV MLR-based 
forest AGB was 0.86 which shows an 
approximately 0.93 correlation coefficient. The 
root mean square error (RMSE) for the MLR-
based modeled forest AGB was minimum for the 
same polarimetric combination. The reason for 
getting the best values with HH & HV based MLR 
for forest AGB retrieval may be due to the 
sensitivity of the HH polarization to the double 
bounce scattering due to the tree trunks 
(Herndon et al. 2020) and the sensitivity of the 
HV polarization to the volumetric scattering due 
to the multiple reflections from the tree canopy, 
twigs, and branches. The model has also been 
used for predicting the AGB for the vegetation of 
moist and semi-evergreen forests. The main 
limitation of the MLR model, which is used for 
measuring the forest AGB of different vegetation 
types, is that the polarimetric combinations of the 
SAR data should have backscatter values 
ranging between -3 dB to -18 dB. The 
backscatter values >-3 and less than -18 dB of 
different polarimetric combinations of the SAR 
data are not suitable input values in the MLR for 
predicting the forest AGB.  
 

4. CONCLUSION 
  
The main objective of this research was the 
evaluation of the potential of fully polarimetric L- 
band space borne SAR data in the MLR for 
estimating the vegetation AGB of complex 
forests. Point Centered Quarter (PCQ) sampling 
method was used for collecting the field data for 
30 different locations of different forest types in 
the study area. The results indicated that out of 
30 plots 7 plots are having AGB less than 100 
t/ha and 7 plots are having values greater than 
400 t/ha. Out of the 7 plots that are having AGB 
greater than 400 t/ha, one plot is having AGB 
value greater than 1000 t/ha which is 
unexpectedly very high. The scatterplot between 
the polarimetric channels and the field-measured 
forest AGB data for the 30 plots shows that the 
highest coefficient of determination is obtained 

from the HV polarization. The different 
backscatter values in HV and VH polarisations 
were observed for 5 plots and for the remaining 
25 plots the backscatter values in both the 
polarimetric channels are similar. The very high 
AGB for the plot is due to the large DBH and 
forest height in the forest plot. The 20 forest plots 
that were used in the MLR parameters retrieval, 
the model-based AGB values for the same plots 
were retrieved and compared with the field-
measured data. A good correlation was obtained 
between field-measured forest AGB and MLR 
model-based predicted forest AGB for those 20 
plots that were used in the model training. The 
validation of the modeling approach was 
performed with the 10 remaining plots that were 
not used in the model training and it was 
observed that the highest coefficient of 
determination with the lowest RMSE was 
obtained with HH & HV polarimetric combination. 
The study recommends the implementation of 
the MLR model for forest AGB retrieval using a 
time-series approach of multi frequency data to 
minimize any season-induced uncertainty in the 
forest vegetation.  
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