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Abstract 
 

In this paper, we construct a family of high order self-starting one-block numerical methods for the 
solution of stiff initial value problems (IVP) in ordinary differential equations (ODE). The Reversed 
Adams Moulton (RAM) methods, Generalized Backward Differentiation Formulas (GBDF) and 
Backward Differentiation Formulas (BDF) are used in the constructions. The E-transformation is applied 

to the triples and a family of self-starting methods are obtained. The family is stableL  for 7k  . 
The numerical implementation of the methods on some stiff initial value problems are reported to show 
the effectiveness of the methods. The computational rate of convergence tends to the theoretical order as 
h tends to zero.  
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1 Introduction 

 
The focus of many researchers is to construct methods that are stable and with improved level of accuracy, 
for the solution of first and higher order ordinary differential equations. See [1,2,3,4,5,6,7].   In this paper, 
we focus on the construction of a family of block methods that exhibits the above properties (stability and 
accuracy) for the numerical solution y(t) of the initial value problem  
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The Reversed Adams Moulton (RAM) methods are generally written as   
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(see [8]). They are therefore generally zero stable. The determination of the coefficients  k

r 0  is done 

by imposing the maximum order 1k  on the method (2). This leads to the matrix equations  
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which is solved simultaneously for the coefficients (see [8,1]). 
 

1.1 The backward differentiation formulas (BDF) 
 
A k-step BDF introduced in [9] is a linear multistep formula that has order p = k and error constant 
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k
C p when the coefficient of the derivative function is normalized to one. They are popular for 

the solution of stiff differential equations (1). They have the general formula 
 

knkn

k

i
ini fhy 


  

0  
                                                                          (4) 



 
 
 

Ajie et al.; JAMCS, 31(6): 1-14, 2019; Article no.JAMCS.48357 
 
 
 

3 
 
 

The coefficients 
k
jj 1}{    are uniquely determined by imposing the order k on (4) which leads to the 

matrix equation 

 

         

























































































k
kkkk k

k

k

k

k









.

.

.

...3210

.

.

.

...3210

...3210

1...1111

.

.

.

2

1

0

2

1

0

222

                                                              (5) 

 

which are solved simultaneously. The methods have been shown in [1,10,11] to be zero stable for 6k , 

and zero unstable for 7k . 

 

1.2 The generalized backward differentiation formulae (GBDF) 

 
This class of methods introduced in [8] has the form 
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for all 1k , where 
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It implemented by coupling it with some set of initial and final additional methods. While BDF are 0-

unstable, for k > 6, GBDF though cannot be used as single integrator, provide Stablejkj ,0 , 

StableA jkj ,  methods for all 32k .  

 

2 Construction of the New Self-starting Block Methods 

 
The methodology for the construction is captured in the following theorem [2]: 
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Let the multi-family of LMF   Km
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  be given, that is, 
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with  ][][ , j
k

j
k   for a fixed j forming a family of variable order jkp ,  of variable step number k. Then 

the resultant system of composite LMF 

 

mjlkifEhEyEE n
j

k
i

n
j

k
i .,..,2,1;)1(0;)()( ][][                       (9) 

 

 arising from the E-operator transformation of  (8) can be composed as the block method 
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if k is chosen such that l is an integer given as  
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   where ,1nY ;nY andFn 1 nF
   

...,2,1,0n   are vectors as defined below and 

0101 ,,, BBAA  are square matrices also defined below for a fixed m. 
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Proof: 

Notice that the E-operator is effectively applied k-l times on the system of LMF  
jk

j
k

j
k ,

][][ ,  . Thus 

there are 2k-l unknown solution points captured in the block of solution 
T

lknnnn yyyY ).,..,,( 2211   .  By this the block definition in (11) is realized if the coefficient 

matrices  0101 ,,, BBAA  are square matrices of dimension )2()2( lklk  .  

 

This simply imply that lklkmm  2)(  so that l is as in (12) and for a fixed m the k is then 

chosen such that 0 lk   
 
In particular: 
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When 0 lk  , the method requires no shifting, this is so if km . However, the case of interest in 
this paper is when m = 3. 
 

Consider the triple of k-step LMF defined by ],[ 11  , ],[ 22  and ],[ 33    Shifting this (k-l) 

times, where 
2

3


k
l , we have a set of 2k-l equations in 2k-l unknowns which can be written in the 

block form (10).  
 

3 Stability of the Implicit Block Methods 
 
When (10) is applied to test equation 
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 it yields the characteristics equation.    

      

 

))(det(),( 0101 BRBzARAzR 
                                        

           
(15) 



 
 
 

Ajie et al.; JAMCS, 31(6): 1-14, 2019; Article no.JAMCS.48357 
 
 
 

7 
 
 

The region of absolute stability AR  associated with (10) is the set 
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If we let 0z  in (15), the difference system becomes 
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All the proposed block methods can be cast in the form  
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To see this, assume order 1p for all the LMF that constitute the block, then by consistency,  
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1  aeA                                                                                                   (20) 

 

where 
Te )1...111( . From (20) it follows that 
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The above ensures zero-stability of the implicit block methods (10). Method (10) applied to test equation can 
also be written as 
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is the amplification matrix. If as z tends to infinity (23) tends to zero (that is 0)( M  ), it means that an 

A-stable (10) is L-stable. If we take ],[ 11  , ],[ 22  and ],[ 33   to be RAM, GBDF and BDF 

respectively, then the coefficients of order 3 method 
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The stability function )(zP
 is  
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The stability domain S of this family is    
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The )(zD  (the only non-zero value of R(z)) for this family of methods are given as a rational function 
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Definition 1: A block method is said to be pre-stable if the roots of )(zQ  are contained in
C . 

 

For the cases of orders 3, 5 and 7 above )(zD  has no negative pole on
C . In all the cases, the roots 

of )(zQ  are contained in
C as shown below: 

 
roots for case: k=3 are  
{{� → 1.0187340384857744− 0.8263451688443794�}, {� →
1.0187340384857744+ 0.8263451688443794�}, {� → 1.6708652563617843}} 

 
roots for case: k=5 are 
{{� → 0.5496503163387506  − 1.3267991841349167�}, {� →
0.5496503163387506  + 1.3267991841349167�}, {� →
1.151541041151053  − 0.6310368906999217�}, {� →
1.151541041151053  + 0.6310368906999217�}, {� →
1.4230274032805632  − 0.24822115565736874�}, {� →
1.4230274032805632  + 0.24822115565736874�}} 
 
roots for case: k=7 are  
{{� → 0.12805543041947612− 1.6041775714692936�}, {� → 0.12805543041947612+
1.6041775714692936�}, {� → 0.7828629304247531− 0.9771613463405875�}, {� →
0.7828629304247531+ 0.9771613463405875�}, {� →
1.052641898979391− 0.30282200428785017�}, {� →
1.052641898979391+ 0.30282200428785017�}, {� →
1.2966180420834268− 0.8693941685370542�}, {� →
1.2966180420834268+ 0.8693941685370542�}, {� → 1.6254920361214837}} 
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The one step block method is A-stable if and only if it is stable on the imaginary axis (I-stable): 

1)( iyD  for all y , and D(z) is analytic for 0)( zD  (i.e., )( zQ  does not have roots with  

negative or zero real parts), I-stability is equivalent to the fact that the Norsett polynomial defined by  
 

)()()()()()()(
22

iyPiyPiyQiyQiyPiyQyE     (26) 

 

satisfies 0)( yE  for all y , see  [12]. In each of the cases of order p = 3, 5, 7, (26) is satisfied 

and 0)( zD as z implying that the methods are L-stable for 7k   
 

4 Numerical Implementation 
 
Problem 1: (cf: [8]) 
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The theoretical solution of the problem is:  
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Problem 2: (cf: [13]) 
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Problem 1 is solved using order p=3, 5, 7 and 9. The error and rate of computational convergence are 
displayed in Table 1. It can be seen that the rate of computational convergence is tending towards the 
theoretical order as h tends to 0 except for the method of order 9 which exhibit order reduction The error in 
order 3 when used to solve problem 1 is plotted against the step size h and displayed in Fig. 1. 



 
 
 

Ajie et al.; JAMCS, 31(6): 1-14, 2019; Article no.JAMCS.48357 
 
 
 

12 
 
 

Table 1. Error and order of convergence of RAM/GBDF/BDF p=3, 5, 7, 9 
 

H Error Rate Error Rate Error Rate Error Rate 
1e-2 2.697e-02  6.136e-02  4.641e-02  7.166e-02  
5e-3 4.879e-03 2.47 2.735e-03 4.49 3.231e-03 3.84 1.047e-03 6.10 
2.5e-3 6.510e-04 2.91 7.608e-05 5.17 3.889e-05 6.38 6.234e-06 7.39 
1.25e-3 8.363e-05 2.96 2.357e-06 5.01 3.909e-07 6.64 3.803e-08 7.36 
6.25e-4 1.061e-05 2.98 7.192e-08 5.03 3.431e-09 6.83 2.753e-10 7.11 

 

 
Fig. 1. Error in the proposed method of order p=3 for problem 1 versus h. 

 

 
Fig. 2. Slope for order 3 method  
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Comparing Figs. 1 and 2, it is observed that the computational convergence rate and the theoretical rate of 
convergence have the same slope for order 3 method. 
 
Problem 2 is a Chemical Kinetics Problem. It is solved using order 5 of the proposed method and constant 
step size h = 0.0001. The error tolerance for accuracy in the Newton-Raphson iteration is set at 10-2. The 
errors in the Table 2 are the maximum absolute values of the difference between approximate solution of the 
proposed method and that of MATLAB ODE15s (which is assumed to be the exact solution of the problem).  
 

Table 2. Errors from proposed method, k=5; p=5 when applied to problem 2 
 

T 2.00 5.00 7.5 10.00 
Errors 2.30e-006 4.20e-006 4.41e-005 7.19e-005 

 

5 Conclusion 
  
We have constructed a family of high order self-starting one-block methods using multistep triple. This 

family is zero stable for all 3k , l-stable for 7k and exhibit order reduction for 9k  . The numerical 

examples considered showed that the methods are comparable to the existing ones.  
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